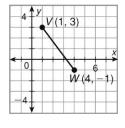


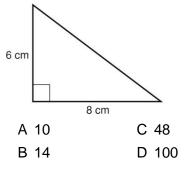
11. If $m \angle B = x^\circ$, what is the measure of a supplement of $\angle B$?

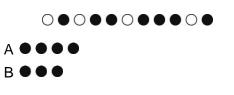
A 90°	C (90 - x)°
B 180°	D (180 – <i>x</i>)°


12. What are the coordinates of the midpoint of \overline{GH} with endpoints G(-2, 5) and H(4, 1)?

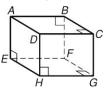
A (6, 4)	C (-3, 2)
B (1, 3)	D (2, 6)

13. *M* is the midpoint of \overline{RS} and *R* has coordinates (2, 5). *M* has coordinates (6, 9). Find the coordinates of *S*.


A (4.5, 6.5)	C (4, 4)
B (10, 13)	D (16, 16)

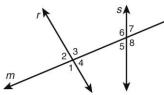

14. Use the Distance Formula to find VW.

15. Use the Pythagorean Theorem to find the length of the hypotenuse.



- 17. Which conjecture is true?
 - A An even number plus 3 is always even.
 - B An even number plus 3 is always prime.
 - C An even number plus 3 is always odd.
 - D A prime number plus 3 is always even.
- 18. Which conditional statement is true?
 - A If two angles are acute, then they are complementary.
 - B If an angle is acute, then its measure is less than 90°.
- 19. What is the converse of "If there are clouds in the sky, then it is raining"?
 - A If it is raining, then there are clouds in the sky.
 - B If it is not raining, then there are clouds in the sky.
 - C If it is raining, then there are no clouds in the sky.
 - D If it is not raining, then there are no clouds in the sky.
- 20. Given: If two angles are complementary, then both angles measure less than 90°. Angles that measure less than 90° are acute. ∠1 and ∠2 are complementary. What conclusion can be drawn?
 - A Only $\angle 1$ is acute.
 - B Only ∠2 is acute.
 - C Both angles are acute.
 - D Neither angle is acute.
- 21. Which item can be given as a statement in a proof?

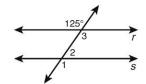
- A Given
- B Def. of comp. 🖄
- $C m \angle 1 + m \angle 2 = 180^{\circ}$
- D Trans. Prop. of =
- 22. Given the partially completed two-column proof, which is the reason for Step 3?


Statements	Reasons
1. $\overline{AE} \cong \overline{FB}$	1. Given
2. FB ≅ EF	2. Given
3. <i>AE</i> ≅ <i>EF</i>	3

- A Def. of midpoint
- B Trans. Prop. of \cong
- 23. Classify \overline{AB} and \overline{CD} .

- A skew segments
- B parallel segments
- C perpendicular segments
- D intersecting segments

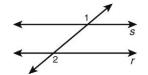
Use the figure for Exercises 24–26.

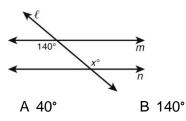

- 24. How are line *m* and line *s* related?
 - A intersecting C perpendicular
 - B parallel D skew
- 25. Identify the transversal.

A line *m* B line *s*

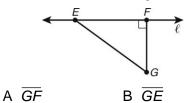
26. What type of angle pair are ∠3 and ∠5?A alternate interior angles

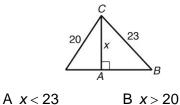
- B corresponding angles
- C alternate exterior angles
- D same-side interior angles
- 27. Which correctly completes the sentence? If two parallel lines are cut by a transversal, then the pairs of corresponding angles are _____.
 - A complementary
 - B congruent

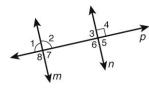

Use the figure for Exercises 28 and 29.

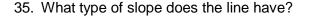

- 28. Given $r \parallel s$, what is the measure of $\angle 1$? A 55° B 125°
- 29. Given $r \parallel s$, which angle is supplementary to $\angle 3$?

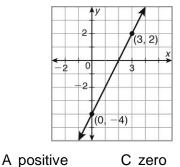
A ∠1 B ∠2


30. Given: $\angle 1 \cong \angle 2$. Which theorem or postulate proves that lines *r* and *s* are parallel?


- A Converse of the Corresponding Angles Postulate
- B Converse of the Alternate Interior Angles Theorem
- C Converse of the Alternate Exterior Angles Theorem
- D Converse of the Same-Side Interior Angles Theorem
- 31. Which value of *x* makes lines *m* and *n* parallel?


32. Which segment's length gives the distance from *G* to line ℓ ?


33. Which inequality is correct?



34. If $\angle 1 \cong \angle 2$ and $\angle 4$ is a right angle, which postulate or theorem is used to prove $m \parallel n$?

- A Alt. Int. /s Thm.
- B 2 lines \perp to same line \rightarrow 2 lines are ||
- C Corr. /s Post.
- D Vert. /s Thm.

B negative

C zero D undefined

36. What is the slope of the line through (3, 6) and (4, 2)?

37. Given a line with a slope of 2, what is the slope of a line parallel to the given line?

A -2 C
$$\frac{1}{2}$$

B $-\frac{1}{2}$ D 2

38. Which equation is in slope-intercept form?

A
$$y = -\frac{2}{3}x + 9$$

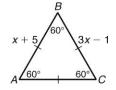
B $y + 2 = \frac{2}{3}(x - 6)$

39. A line parallel to the *x*-axis could contain which point?

40. Which line is perpendicular to y = 2x + 4?

A
$$y = 2x - 6$$
 B $y = -\frac{1}{2}x + 7$

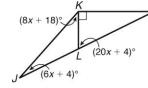
41. What is the equation of the line through (-1, 8) and (4, 18)?


A
$$y = \frac{1}{2}x + 10$$
 C $y = 2x + 10$
B $x + 2y = 10$ D $-2x + y = -10$

42. Classify the triangle.

- A isosceles acute
- B isosceles obtuse
- C scalene acute
- D scalene obtuse

Use the figure for Exercises 43 and 44.



- 43. Which is NOT a correct classification for the triangle?
 - F acute H isosceles
 - G equiangular J scalene
- 44. What is the length of side \overline{BC} ?

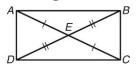
A 3	C 10
B 8	D 24

Use the figure for Exercises 45 and 46.

M

45. What is m $\angle KLM$?

F 3	H 42
G 22	J 64


46. What is m $\angle M$?

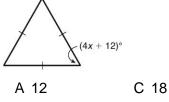
A 0.2	C 26
B 4	D 64

- 47. What is the m $\angle U$? (7x + 15)° V(8x)° W F 5 H 40 G 15 J 120
- 48. Two congruent triangles have the following corresponding parts: $\overline{RS} \cong \overline{UV}, \overline{RT} \cong \overline{UW}$, and $\angle R \cong \angle U$. Which is NOT necessarily a correct congruence statement?
 - $\mathsf{A} \ \triangle RST \cong \triangle UVW$
 - $B \triangle STR \cong \triangle VWU$ $C \triangle TRS \cong \triangle VWU$
 - $D \triangle TRS \cong \triangle WUV$
- 49. $\triangle KLM \cong \triangle RST. \text{ m} \angle L = (3x + 15)^{\circ}$ and $\text{m} \angle S = (6x + 3)^{\circ}.$ What is the value of x? F 2 H 6

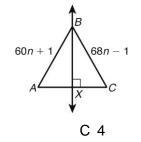
ΓZ	пο
G 4	J 27

Use the figure for Exercises 50–52.

50. If AD = 5y + 7 and BC = 7y - 3, what must the value of y be to prove $\triangle AED \cong \triangle CEB$ by the SSS Postulate? A 2 C 17


B 5	D 32
20	0 01

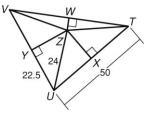
51. What postulate or theorem justifies the congruence statement $\triangle ABE \cong \triangle CDE$?


F SSS	H ASA
G SAS	J AAS

- 52. If $\angle B$ and $\angle C$ are right angles, what additional congruence statement would allow you to prove $\triangle DCB \cong \triangle ABC$ by the ASA postulate?
 - $\mathsf{A} \ \angle \mathsf{DBC} \cong \angle \mathsf{ACB}$
 - $\mathsf{B} \ \angle \mathsf{BDC} \cong \angle \mathsf{CAB}$
 - $\mathsf{C} \ \overline{\textit{AB}} \cong \overline{\textit{DC}}$
 - $\mathsf{D} \ \overline{\mathsf{AC}} \cong \overline{\mathsf{DB}}$

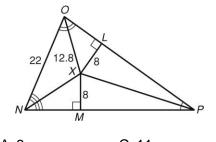
53. What is the value of x?

- B 19.5 D 60
- 54. \overline{BX} is the perpendicular bisector of \overline{AC} . What is the value of *n*?

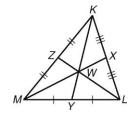

B $\frac{1}{4}$ D Not here

A 0

55. What information is sufficient to allow you to conclude that *Y* is on the bisector of $\angle E$?



- A m $\angle 1 = 90^{\circ}$ B m $\angle 2 = 90^{\circ}$ C m $\angle 1 = 90^{\circ}$ and m $\angle 2 = 90^{\circ}$ D m $\angle FYE + m \angle DYE = 90^{\circ}$
- 56. Point *Z* is the circumcenter of $\triangle TUV$. What is the value of *UV*?



G 45 J Not here 57. What is the distance from X to \overline{ON} ?

A 8	C 11
B 12.8	D 12

58. If *WX* = 3.6, *WL* = 6.1, and *KW* = 8, what is the value of *ZW*?

F 3.05H 4G 3.6J 4.06