Geometry BELL WORK

Classify the relationship between each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

1) $\angle 4$ and $\angle 5$

2) ∠4 and ∠6

3) If $m \angle 8 = 110^{\circ}$, what is $m \angle 7$?

Assignment:

3.2 pg. 181 # 1-10

alternate interior (congruent)
$$2x-15)^{\circ}$$

$$2x-15=x+55$$

$$-x$$

$$x-15=55$$

We used angle relationships in parallel lines to determine congruent angles.

Today we will:

- * Find slopes of lines.
- * Use slope to identify parallel and perpendicular lines

(G.CO.C.9 Congruence: Prove theorems about lines and angles)

The rate of change on a graph is the slope.

Slope (m) is measured as

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

Determine the slope of the line that contains the given points.

1.
$$S(-1, 2), W(0, 4)$$

$$M = \frac{y_2 - y_3}{x_2 - x_1}$$

$$\frac{4 - 2}{0 - (-1)} - \frac{2}{1}$$

$$= (2)$$

2.
$$G(-2, 5), H(1, -7)$$

$$\frac{-7-5}{1-(-2)} - \frac{-12}{3}$$

Find the slope of each line.

Find the slope of each line.

Activity: matching slopes and graphs

Here are the potential answers:

(1, -2) (3, 1)	slope = -1	slope = 1	(2, -2) (0, -1)	
$slope = -\frac{3}{2}$	(-4, -2) (0, 4)	(-2, -1) (0, 3)	<i>slope</i> = −2	
(-2, 2) (0, 3)	slope = 2	$slope = \frac{3}{2}$	(1, -2) (3, 2)	
$slope = -\frac{1}{2}$	(-2, -2) (2, -6)	(1, -2) (0, 1)	$slope = \frac{1}{2}$	
slope = -3	slope = 2	(0, 4) (2, 1)	(-2, -3) (0, 1)	
(-2, -2) (1, 1)	(2, -2) (1, 0)	slope = 2	$slope = \frac{3}{2}$	

$$\frac{1}{4\sqrt{1-(-2,-3)}} = \frac{1-(-3)}{0-(-2)}$$

Assignment:

3.3a pg 191 # 12-21 (18-21 SHOW ALL WORK!)