Name	Notes 4-1 p.1
	Date
4-1 Classifying Triangles	
Parts of a Triangle:	
	$U^{65^{\circ} 65^{\circ}}$
Classify Triangles by angles:	A
Acute Triangle: all angles are ()	\bigwedge
Equiangular: all three angles are ($\longrightarrow B^{60^{\circ}} \land C$
D 35° 25° F $Obtuse Triangle is$	le: One
Right Triangle: One angle is()	H ^{60°} 30° J
Classify Triangles by Sides:	\neg^T
Scalene Triangle: sides are	23 12
(≅ sides)	X/V
Isosceles Triangle: sides are	\bigwedge^{H}
(≅ sides)	$_{L} \longrightarrow_{J}$
Equilateral Triangle:are	\bigwedge^{N}
(≅ sides)	
F	₁ ─── <i>₽</i>

Classify each triangle as acute, equiangular, obtuse, or right.

Find the measure of each side of equilateral ΔRST with RS = 2x + 2, ST = 3x, and TR = 5x - 4.

Find the measure of each side of $\triangle ABC$ with vertices A(-1, 5), B(6, 1), and C(2, -6). Classify the triangle.

4-1 Classifying Triangles

Parts of a Triangle: <u>Sides</u> <u>Vertices</u> <u>Angles</u>

Classify Triangles by angles:

Acute Triangle: all angles are <u>acute</u> (<90°) <u>Equiangular</u>: all three angles are <u>congruent</u> (=60°)

<u>**Right**</u> Triangle: One angle is <u>**right**</u> (**=90**)

Classify Triangles by Sides:

Classify each triangle as *acute*, *equiangular*, *obtuse*, or *right*.

Classify each triangle as *equilateral*, *isosceles*, or *scalene*.

Find the measure of each side of equilateral $\Box RST$ with RS = 2x + 2, ST = 3x, and TR = 5x - 4.

Find the measure of each side of $\triangle ABC$ with vertices A(-1, 5), B(6, 1), and C(2, -6). Classify the triangle.